In this episode of the podcast (#216), sponsored by Digicert, we talk with Brian Trzupek, Digicert’s Vice President of Product, about the growing urgency of securing software supply chains, and how digital code signing can help prevent compromises like the recent hack of the firm SolarWinds.


We spend a lot of time talking about software supply chain security these days? But what does that mean. At the 10,000 foot level it means “don’t be the next Solar Winds” – don’t let a nation state actor infiltrate your build process and insert a backdoor that gets distributed to thousands of customers – including technology firms three letter government agencies. 

OK. Sure. But speaking practically, what are we talking about when we talk about securing the software supply chain? Well, for one thing: we’re talking about securing the software code itself. We’re talking about taking steps to insure that what is written by our  developers is actually what goes into a build and then gets distributed to users.

Digital code signing – using digital certificates to sign submitted code – is one way to do that. And use of code signing is on the rise. But is that alone enough?  In this episode of the podcast, we’re joined by Brian Trzupek the SVP of Product at Digicert to talk about the growing role of digital code signing in preventing supply chain compromises and providing an audit trail for developed code.

Brian is the author of this recent Executive Insight on Security Ledger where he notes that code signing certificates are a highly effective way to ensure that software is not compromised -but only as effective as the strategy and best practices that support it. When poorly implemented, Brian notes, code signing loses its effectiveness in mitigating risk for software publishers and users.

In this conversation we talk about the changes to tooling, process and staff that DEVOPS organizations need to embrace to shore up the security of their software supply chain. 

“It boils down to do you have something in place to ensure code quality, fix vulnerabilities and make sure that code isn’t incurring tech debt,” Brian says. Ensuring those things involves both process, new products and tools as well as the right mix of staff and talent to assess new code for security issues. 

One idea that is gaining currency within DEVOPS organizations is “quorum based deployment” in which multiple staff members review and sign off on important code changes before they are deployed. Check out our full conversation using the player (above) or download the MP3 using the button below.


As always,  you can check our full conversation in our latest Security Ledger podcast at Blubrry. You can also listen to it on iTunes and check us out on SoundCloudStitcherRadio Public and more. Also: if you enjoy this podcast, consider signing up to receive it in your email. Just point your web browser to securityledger.com/subscribe to get notified whenever a new podcast is posted.

The recent SolarWinds attack highlights an Achilles heel for enterprises: software updates for critical enterprise applications. Digital signing of code is one solution, but organizations need to modernize their code signing processes to prioritize security and integrity and align with DevOps best practices, writes Brian Trzupek the Senior Vice President of Products at DigiCert in this thought leadership article.


Even in today’s security-charged world, the SolarWinds breach was a wakeup call for cybersecurity professionals. It was distinguished by its sophistication and the fact that it was carried out as part of legitimate software updates. The incident was quickly all over the news and has brought renewed focus on need for secure DevOps.

Automating your way out of PKI chaos.”

Code Signing Alone Is Not Enough

The security incident at SolarWinds was especially unsettling because could easily happen at any large software organization that delivers regular updates. Code signing certificates are a highly effective way to ensure that software is not compromised. However, it is only as effective as the strategy and best practices behind it. When poorly implemented, code signing loses its effectiveness in mitigating risk for software publishers and users. Issues often include:

  • Using the same signing key to sign all files, across multiple product lines and businesses
  • Lack of mechanisms in place to control who can sign specific files
  • Insufficient reporting capabilities for insights into who signed what and when
  • Failure to sign code at every stage of development, as part of an overall security by design process
  • Lack of signing and verifying code from third parties
  • Poor processes for securing keys and updating them to new key size or algorithm requirements
  • Failure to test code integrity before signing
  • Inadequate visibility into where certificates are, and how they are managed

Common pitfalls might include using the same signing key to sign all files, across multiple product lines and businesses. Some organizations might have no mechanisms in place to control who can sign specific files. They may also lack reporting capabilities, which can provide insights into who signed what—and when.

[Read Brian’s piece Staying Secure Through 5G Migration.]

What have we learned from the SolarWinds attack? For organizations where DevOps is fundamental, applying best practices to signing processes is more essential than ever. According to some studies, more than half of IT security professionals are concerned about bad actors forging or stealing certificates to sign code—but fewer than a third enforce code signing policies on a consistent basis. It’s time for organizations to do better and enforce zero-trust
across all their systems, signing everything, at every stage after verifying it is secure.

Simplifying and standardizing

Traditional code signing processes can be complex and difficult to enforce. They are often based on storing keys on desktops as well as sharing them. Visibility into activities is often limited, making mismanagement or flawed processes difficult to discover and track. To mitigate these issues, many organizations are simplifying their processes using code-signing- as-a-service approaches. Code-signing-as-a-service can accelerate the steps required to get code signed, while making it easier to keep code secure. A robust solution can empower organizations with automation, enabling teams to minimize manual steps and accelerate signing processes. APIs can enable it to integrate seamlessly with development workflows and automated scheduling capabilities enable organizations to proactively and approve signature windows to support new releases and updates.

To strengthen accountability throughout the process, administrators can apply permission- based access. Strictly controlling access helps improve visibility into which users are allowed to sign code and which certificates and private keys they are allowed to utilize.

Standardizing workflows

Standardizing code signing workflows can also help reduce risk to an organization. Instead of allowing everyone in an organization to use the same key for signing, many organizations are using separate code signing keys for different DevOps teams, while granting administrators visibility over key usage. This best practice helps minimize the risk of mistakes that can occur across a company by limiting the ability of breaches to propagate. For example, if a key is used to sign a release that has been compromised, only one team’s code will be impacted.

Maximum flexibility to minimize risk

Key management flexibility is another helpful best practice, reducing risks by enabling administrators to specify shorter certificate lifetimes, rotate keys and control keypairs. For example, Microsoft recognizes publishers that rotate keys with higher reputation levels. With the right key management approach, an administrator could specify a specific number of days or months exclusively for files designed for use in Microsoft operating systems.

Secure key storage offline except during signing events

Taking keys offline is another measure that can secure code signing. With the right code signing administrative tool, administrators can place keys in a “offline mode,” making it impossible to use them to sign releases without the proper level of permission in advance. Release planning is a fundamental to software development, so most developers are comfortable scheduling signatures for specific keys directly into their processes.

Taking keys offline is a strong step to ensure that keys will not be used in situations where they should not be. It also adds a layer of organizational security by splitting responsibilities between signers and those who approve them—while providing improved visibility into which keys are signed by whom.

Freeing up developers to do what they do best

It’s clear that safeguarding DevOps environments correctly remains challenging, but fortunately the right management tools can minimize hassles—and maximize protection. As we’ve discussed, automation is essential for applying security across CI/CD pipelines. Seek out a solution that can fit smoothly within workflows and free up engineers from individual steps required for cryptographic asset protection. The tool should make signing keys easily accessible when pushing code and automate signing of packages, binaries and containers on every merge to master when authorized. Organizations also need a process for testing code integrity before they sign. A centralized, effective signing management tool can handle the signing tasks, while integrating with other systems that perform necessary integrity tests. For key security, the solution should provide the option of storing the keys offline in virtual HSMs. During a signing event, it should enable developers to access the keys to sign with one click, then return them back to secure offline storage

DevOps pros work within a variety of environments, so the signing solution should support portable, flexible deployment models via SaaS or on a public or private data center. Businesses in every industry are becoming increasingly software-driven and the challenges to DevOps organizations won’t disappear anytime soon. However, with the right approach to code signing, organizations can dramatically strengthen their security posture, minimize their chances of becoming the next victim and ensure customer confidence in their solutions.


(*) Disclosure: This podcast was sponsored by Digicert. For more information on how Security Ledger works with its sponsors and sponsored content on Security Ledger, check out our About Security Ledger page on sponsorships and sponsor relations.

In this episode of the podcast (#200), sponsored by Digicert: John Jackson, founder of the group Sakura Samurai talks to us about his quest to make hacking groups cool again. Also: we talk with Avesta Hojjati of the firm Digicert about the challenge of managing a growing population of digital certificates and how  automation may be an answer.


Life for independent security researchers has changed a lot in the last 30 years. The modern information security industry grew out of pioneering work by groups like Boston-based L0pht Heavy Industries and the Cult of the Dead Cow, which began in Lubbock, Texas.

After operating for years in the shadows of the software industry and in legal limbo, by the turn of the millennium hackers were coming out of the shadows. And by the end of the first decade of the 21st century, they were free to pursue full fledged careers as bug hunters, with some earning hundreds of thousands of dollars a year through bug bounty programs that have proliferated in the last decade.

Despite that, a stigma still hangs over “hacking” in the mind of the public, law enforcement and policy makers. And, despite the growth of bug bounty programs, red teaming and other “hacking for hire” activities, plenty of blurry lines still separate legal security research from illegal hacking. 

Hacks Both Daring…and Legal

Still, the need for innovative and ethical security work in the public interest has never been greater. The Solar Winds hack exposed the ways in which even sophisticated firms like Microsoft and Google are vulnerable to compromised software supply chain attacks. Consider also the tsunami of “smart” Internet connected devices like cameras, television sets and appliances are working their way into homes and workplaces by the millions. 

Podcast Episode 112: what it takes to be a top bug hunter

John Jackson is the co -founder of Sakura Samurai, an independent security research group. 

What does a 21st century hacking crew look like? Our first guest this week is trying to find out. John Jackson (@johnjhacking) is an independent security researcher and the co-founder of a new hacking group, Sakura Samurai, which includes a diverse array of security pros ranging from a 15 year old Australian teen to Aubrey Cottle, aka @kirtaner, the founder of the group Anonymous. Their goal: to energize the world of ethical hacking with daring and attention getting discoveries that stay on the right side of the double yellow line.

Update: DHS Looking Into Cyber Risk from TCL Smart TVs

In this interview, John and I talk about his recent research including vulnerabilities he helped discover in smart television sets by the Chinese firm TCL, the open source security module Private IP and the United Nations. 

Can PKI Automation Head Off Chaos?

One of the lesser reported sub plots in the recent Solar Winds hack is the use of stolen or compromised digital certificates to facilitate compromises of victim networks and accounts. Stolen certificates played a part in the recent hack of Mimecast, as well as in an attack on employees of a prominent think tank, according to reporting by Reuters and others. 

Avesta Hojjati is the head of Research & Development at Digicert.

How is it that compromised digital certificates are falling into the hands of nation state actors? One reason may be that companies are managing more digital certificates than ever, but using old systems and processes to do so. The result: it is becoming easier and easier for expired or compromised certificates to fly under the radar. 

Our final guest this week, Avesta Hojjati, the  Head of R&D at DigiCert, Inc. thinks we’ve only seen the beginning of this problem. As more and more connected “things” begin to populate our homes and workplaces, certificate management is going to become a critical task – one that few consumers are prepared to handle.

Episode 175: Campaign Security lags. Also: securing Digital Identities in the age of the DeepFake

What’s the solution? Hojjati thinks more and better use of automation is a good place to start. In this conversation, Avesta and I talk about how digital transformation and the growth of the Internet of Things are raising the stakes for proper certificate management and why companies need to be thinking hard about how to scale their current certificate management processes to meet the challenges of the next decade. 


(*) Disclosure: This podcast was sponsored by Digicert. For more information on how Security Ledger works with its sponsors and sponsored content on Security Ledger, check out our About Security Ledger page on sponsorships and sponsor relations.

As always,  you can check our full conversation in our latest Security Ledger podcast at Blubrry. You can also listen to it on iTunes and check us out on SoundCloudStitcherRadio Public and more. Also: if you enjoy this podcast, consider signing up to receive it in your email. Just point your web browser to securityledger.com/subscribe to get notified whenever a new podcast is posted. 

Keyboard to the internet

Modern enterprise networks are populated by both people and, increasingly, “things.” But securing the growing population of Internet of Things devices presents unique challenges. In this thought leadership article, Brian Trzupek, the Senior Vice President of Emerging Markets at DigiCert discusses what is needed for effective IoT security.


We’ve seen the IoT come of age over just the past few years, and innovative use cases continue to build momentum. Gartner forecasts that 25 billion connected things will be in use by 2021. However, although the IoT has tremendous potential across many industries, Gartner surveys still show security is the most significant area of technical concern.

When it comes to security, IoT challenges are distinct from the enterprise. Although identity and identification are cornerstones of effective security, IoT and enterprise environments face different challenges. End users are generally involved in enterprise authentication. When trying to use an application or service, they can be present to respond to multifactor authentication challenges. End-users may also have varying sets of roles or access constraints that evolve as their position changes in the organization.

IoT: Insecure by Design

 


(*) Disclosure: This article was sponsored by DigiCert. For more information on how Security Ledger works with its sponsors and sponsored content on Security Ledger, check out our About Security Ledger page on sponsorships and sponsor relations.